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Abstract

In Fall 2009, officials from Chicago Public Schools abandoned their assignment mech-
anism for coveted spots at selective college preparatory high schools midstream. After
asking about 14,000 applicants to submit their preferences for schools under one mech-
anism, the district asked them re-submit preferences under a new mechanism. Officials
were concerned that “high-scoring kids were being rejected simply because of the order
in which they listed their college prep preferences” under the abandoned mechanism.
What is somewhat puzzling is that the new mechanism is also manipulable. This paper
introduces a method to compare mechanisms based on their vulnerability to manipula-
tion. Under our notion, the old mechanism is more manipulable than the new Chicago
mechanism. Indeed, the old Chicago mechanism is at least as manipulable as any other
plausible mechanism. A number of similar transitions between mechanisms took place
in England after the widely popular Boston mechanism was ruled illegal in 2007. Our
approach provides support for these and other recent policy changes involving allocation
mechanisms.
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1 Introduction

In the last few years, policymakers at several school districts have sought to simplify strategic
aspects of school admissions in their open enrollment or school choice plans. A first change
occurred to Boston’s grade K-12 assignment system, known as the Boston mechanism, in place
since 1999. Abdulkadiroğlu and Sönmez (2003) show that this mechanism is vulnerable to
strategic manipulation, and suggest two alternatives which are not. Following a newspaper
article describing these issues (Cook 2003), leadership at Boston Public Schools invited a team
of economists to conduct an empirical evaluation of the mechanism. In June 2005, the Boston
school committee voted to replace the Boston mechanism with the student-optimal stable mech-
anism (Gale and Shapley 1962), a mechanism where participants can do no better than report
their preferences truthfully. The strategic complexity of the Boston mechanism along with its
adverse effects on less sophisticated families were key factors in Boston’s decision (Abdulka-
diroğlu, Pathak, Roth, and Sönmez 2006, Pathak and Sönmez 2008). Another factor was the
potential to use unmanipulated preference data generated by the student assignment mecha-
nism in various policy-related issues including the evaluation of schools.1

The Boston episode challenges a paradigm in traditional mechanism design that treats
incentive compatibility only as a constraint and not as a direct design objective, at least for
the specific context of school choice. Given economists’ advocacy efforts, it is possible that this
incident is isolated, and the Boston events do not adequately represent the desirability of non-
consequentialist objectives as design goals. In this paper, we provide further, and perhaps more
striking, evidence that excessive vulnerability to “gaming” is considered highly undesirable in
the context of school choice. Officials in England and Chicago have taken drastic measures
to attempt to reduce it, and remarkably the Boston mechanism plays a central role in both
incidents.

In England, forms of school choice have been available for at least three decades. The
nationwide 2003 School Admissions Code mandated that Local Authorities, an operating body
much like a U.S. school district, coordinate their admissions practices. This reform provided
families with a single application form and established a common admissions timeline, leading to
a March announcement of placements for anxious 10 and 11 year-olds on “National Offer Day.”
The next nationwide reform came with the 2007 School Admissions Code. While strengthening

1The use of data generated by manipulable mechanisms presents challenges for empirical research and eval-
uation. For example, Hastings, Kane, and Staiger (2006) utilize preference data from Charlotte-Mecklenburg,
which uses the Boston mechanism, to estimate preferences for school characteristics and examine implications
for the local educational market. They argue that the vagueness of the description of the mechanism in the
first year of implementation makes strategic manipulation less of an issue. Similarly, Lim et al. (2009) tie the
limited presence of minorities at senior Army ranks to racial differences between cadet preferences over Army
branches, but they are unable to offer an explanation of these differences since the ROTC mechanism used to
generate their data is highly manipulable. They indicate that the policy recommendation to increase diversity
would depend on the extent of manipulation in the data.
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the enforcement of admissions rules, this legal code also prohibited authorities from using what
they refer to as “unfair oversubscription criteria” in Section 2.13:

In setting oversubscription criteria the admission authorities for all maintained schools must not:

give priority to children according to the order of other schools named as preferences by
their parents, including ‘first preference first’ arrangements.

A first preference first system is any “oversubscription criterion that gives priority to children
according to the order of other schools named as a preference by their parents, or only considers
applications stated as a first preference” (School Admissions Code, 2007, Glossary, p. 118).
The 2007 Admissions Code outlaws use of this system at more than 150 Local Authorities
across the country, and this ban continues with the 2010 Code. The best known first preference
first system is the Boston mechanism, and since 2007 it is banned in England.2 The rationale
for this ban, as stated by England’s Department for Education and Skills, is that “the ‘first
preference first’ criterion made the system unnecessarily complex to parents” (School Code
2007, Foreword, p. 7). Moreover, Education Secretary Alan Johnson remarked that the first
preference first system “forces many parents to play an ‘admissions game’ with their children’s
future.”

While Local Authorities had some time to adjust their admissions rules in England, the
adoption of a new mechanism was considerably more abrupt in Chicago. The district aban-
doned their selective high school mechanism halfway through running it in 2009. That is, after
participants had submitted preferences under one mechanism, but before announcing place-
ments, Chicago Public Schools asked the same participants to resubmit their preferences under
another mechanism a few months later. This is the only case of a midstream change of an
assignment mechanism we are aware of, and in our view it is stunning given the potentially
high-stakes involved. The abandoned mechanism prioritized applicants based on how schools
were ranked and is the most basic form of the Boston mechanism. Under it, Chicago authorities
argued that “high-scoring kids were being rejected simply because of the order in which they
listed their college prep preferences.” The vulnerability of the Boston mechanism to strategic
manipulation led to its elimination in yet another district.

These new case studies from England and Chicago provide additional evidence that the
use of strategically complex assignment mechanisms is considered undesirable in the context
of school choice. Unlike the case of Boston, the reforms in England and Chicago developed
without the guidance of economists (to the best of our knowledge). Not only were the Boston
mechanism and its variants abandoned in both cases, but extreme measures were taken in
the process. Given these circumstances, one would expect local authorities in England and
Chicago to adopt strategy-proof mechanisms, which are immune to manipulation. And yet,
several local authorities in England as well as Chicago adopted alternative mechanisms that

2A formal definition of these mechanisms is presented in Section 3.
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are also vulnerable to manipulation. Therefore, the new mechanisms must be perceived to
be “less manipulable” than the abandoned mechanisms. This motivates our goal to develop
a rigorous methodology to compare mechanisms based on their vulnerability to manipulation.
In this paper we propose a method to compare manipulable mechanisms by examining three
increasingly more demanding notions and relating our notion to these policy changes.

Our most basic notion is based on the following simple idea. Given an economic envi-
ronment, there are often cases where this environment is vulnerable to manipulation under a
mechanism ψ but not under an alternative mechanism ϕ. This may not mean much unless
environments are systematically inclined to be more vulnerable under one of the mechanisms.
This approach can be formalized as follows: A mechanism ψ is at least as manipulable as mech-
anism ϕ if any environment that is vulnerable under ϕ is also vulnerable under ψ, and it is
more manipulable if in addition there is at least one environment that is vulnerable under ψ
but not under ϕ. This notion justifies a number of recent school choice reforms including those
in England and Chicago. While we focus on these recent reforms, our framework is also useful
to formalize other policy debates that have so far remained informal. For instance, one applica-
tion involves changes in the auction mechanism for U.S. Treasury bonds from discriminatory to
uniform-price format and informal arguments dating back to Milton Friedman (1960). Not only
is the discriminatory auction is more manipulable than the uniform-price auction (providing a
formalization of Friedman’s position), but we can establish an even stronger comparison taking
into account the intensity of manipulation.

Related Literature

One approach to studying a mechanism’s vulnerability to manipulation is to characterize do-
mains under which the mechanism is not manipulable (see, e.g., Barberá (2010) for a survey
of strategy-proof social choice rules). However, strategy-proof mechanisms may not exist, may
not be practical, or even if they do exist, they may not be desirable for reasons other than
their incentive properties. In such cases, our paper argues that reducing the vulnerability to
manipulation is desirable. Several recent papers, many motivated by the school choice reforms,
argue that strategy-proofness can also be thought of as a design objective (see, e.g., Abdulka-
diroğlu, Pathak, Roth, and Sönmez (2006), Abdulkadiroğlu, Pathak, and Roth (2009), Pathak
and Sönmez (2008), and Roth (2008)).

Azevedo and Budish (2011) is the closest paper in the spirit of our methodological contribu-
tion. Like us, they are concerned about vulnerability to manipulation when mechanisms are not
strategy-proof. They take an entirely different, but equally plausible, approach and propose a
relaxation of strategy-proofness based on the idea that vulnerability to manipulation disappears
in large economies for some mechanisms, but not others. Their complementary approach can
also be used to formulate the Friedman position in the context of U.S. Treasury Auctions. The
advantage of their approach is that they offer an explicit design desideratum, namely strategy-
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proofness in large. The advantage of our approach is its ability to compare two mechanisms
each of which fail strategy-proofness even in large. Indeed, an evaluation based on strategy-
proofness in large is not possible for our main applications in school choice. Focusing on voting
applications, Carroll (2011) proposes another criteria to evaluate mechanisms based on extent
to which they encourage manipulation. Other papers that relate to our methodological contri-
bution include Parkes et al. (2001), Day and Milgrom (2008), and Erdil and Klemperer (2011)
who each seek to design a combinatorial auction that minimizes manipulability, and to a lesser
extent Kesten (2006) and Dasgupta and Maskin (2008) who make comparisons across alloca-
tion rules based on inclusion of environments focusing on non-strategic properties of student
assignment and voting mechanisms, respectively.

Our paper also contributes to an on-going debate on the features of the Boston mechanism,
still the most widely used U.S. school choice mechanism. While efficiency considerations have
not been central during policy deliberations at Boston Public Schools, experimental evidence
from Chen and Sönmez (2006) and theoretical results from Ergin and Sönmez (2006) show that
the student-optimal stable mechanism is more efficient than the Boston mechanism in com-
plete information environments. Ergin and Sönmez (2006) further observe that the efficiency
advantage of the student-optimal stable mechanism may not persist in incomplete information
environments, whereas Pathak and Sönmez (2008) show that strategic students are better off
under the Boston mechanism in the presence of non-strategic students in complete information
environments. In a recent series of papers, Abdulkadiroğlu, Che, and Yasuda (2011), Feather-
stone and Niederle (2011), and Miralles (2008) argue that the earlier literature might be too
quick to dismiss the Boston mechanism in favor of the student-optimal stable mechanism. They
all provide examples of specific environments where the symmetric Bayes-Nash equilibria of the
Boston mechanism dominates the dominant-strategy equilibria of the student-optimal stable
mechanism. In our view these papers promote the point of view that the efficiency comparison
between these two mechanisms is highly non-robust, but the lack of robustness stems from the
Boston mechanism.

2 General Framework

There is a finite set I of players with a generic member i, and a finite set of outcomes A.
Each player has a preference relation Ri defined over the set of outcomes, where Pi is the strict
counterpart of Ri. Let R = (Ri)i∈I and P = (Pi)i∈I denote the profile of weak and strict
preferences, respectively. The set of possible types for player i is Ti with generic element ti.
We adopt the convention that t−i denotes the type profile of players other than player i, and
define R−i and P−i accordingly. We sometimes refer to a type profile t = (ti)i∈I as a problem.
Let T =

∏
i∈I Ti.

A direct mechanism is a function ϕ : T → A, a single-valued mapping of a type profile to
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an element in A. Let ϕ(t) denote the outcome produced by mechanism ϕ under t. We do not
always expect players to be truthful when reporting their types. This motivates the following
definition.

Definition 1. A mechanism ϕ is manipulable by player i at problem t if there exists a type
t′i such that ϕ(t′i, t−i)Pi ϕ(t).

We will say that profile t is vulnerable under mechanism ϕ if ϕ is manipulable by some
player at t.

A mechanism is manipulable by a player at a problem if he can profit by misrepresenting his
type. Observe that each mechanism induces a natural game form where the strategy space is the
set of types for each player and the outcome is determined by the mechanism. A mechanism
is strategy-proof if truthful type revelation is a dominant strategy of this game for any
player. Equivalently, a mechanism is strategy-proof if it is not manipulable by any player at
any problem.

We next present a notion to compare mechanisms by their vulnerability to manipulation.

Definition 2. A mechanism ψ is at least as manipulable as mechanism ϕ if any profile
that is vulnerable under mechanism ϕ is also vulnerable under ψ.

Two mechanisms can be equally manipulable if they are manipulable for exactly the same set
of problems. Our next definition rules out this possibility.

Definition 3. A mechanism ψ is more manipulable than mechanism ϕ if

1. ψ is at least as manipulable as ϕ, and

2. there is a set of players I, a set of outcomes A, and a profile t where t is vulnerable under
ψ but not under ϕ.

If mechanism ϕ is strategy-proof while mechanism ψ is not, then mechanism ψ is more manipu-
lable than mechanism ϕ. Our main interest is the case where neither ψ nor ϕ are strategy-proof.
Our notion is somewhat conservative in the sense that we deem a mechanism to be more manip-
ulable than another only if there is strict inclusion of profiles where they can be manipulated.
For example, it is more demanding to compare mechanism with this notion than an alterna-
tive notion that simply counts the number of profiles where the mechanisms are manipulable.
However, this fact also means that any comparison we can make under our notion provides a
stronger result.

Although our notion makes no explicit reference to an equilibrium concept, it is possible
to provide it with an equilibrium interpretation. Consider the type revelation game induced
by a direct mechanism. The contrapositive of the first part of the definition implies that for
a problem, if ψ is not manipulable, then ϕ is not manipulable. This means that if at any
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problem, truth-telling is a Nash equilibrium of the type revelation game induced by mechanism
ϕ, it is also a Nash equilibrium of the type revelation game induced by mechanism ψ (even
though the converse does not hold). Recall that if truth-telling is a Nash equilibrium of the
type revelation game induced by mechanism ϕ for all problems, then ϕ is strategy-proof (see,
e.g., Austen-Smith and Banks 2005).

While these definitions are general, in the applications in this paper, we mostly focus on
assignment or matching problems. In such problems, A is the set of possible assignments, each
player has strict preferences, and we assume that each only cares about her own assignment.
We let ϕi(t) denote the assignment obtained by player i under type profile t.

3 Applications in School Choice

Throughout this section and the next, the type space of each agent is the set of his preferences.
Hence the focus of Sections 3 and 4 is preference revelation mechanisms.

3.1 Reform at Chicago’s Public Schools in 2009

To describe the assignment problem for Chicago’s selective high schools, we begin by introducing
some notation. There is a finite set I of students and a finite set S of schools. School s has
capacity qs, so the total capacity is Q =

∑
s∈S qs. We assume that |I| > Q so the seats are

in short supply. In 2009, there were over 14,000 applicants for the 9 selective Chicago Public
Schools (CPS) high schools, consisting of 3,040 seats.3

Each student i has a strict preference ordering Pi over schools and being unassigned. Since
each student must take an admissions test as part of their application, each student also has a
composite score. We assume that no two students have the same composite score. In practice,
if two students have the same test scores, the younger student is coded by CPS as having a
higher composite score. The outcome of the admissions process is a matching µ, a function
which maps each student either to her assigned school or to being unassigned.4 Let µ(i) denote
the assignment of student i.

The mechanism that was abandoned in Fall 2009 works as follows:

3In practice, Chicago Public Schools splits selective high schools into five parts. The first ‘unrestricted’ part
is reserved for all applicants. The other four groups are reserved for students from particular neighborhoods,
where students are ordered by their test scores within their neighborhood group. To implement this the district
simply modifies the rank order list of participants to accommodate this neighborhood constraint. That is, a
student who ranks a school is interpreted by the assignment algorithm to rank both the ‘unrestricted’ part and
the part in their neighborhood tier in that order. We abstract away from this modification because it does not
affect our analysis.

4If a student is not assigned a seat at one of Chicago’s selective high schools, she typically later enrolls in
a neighborhood school, pursues other public school options such as charter and magnet schools, or leaves the
public school system for either private or parochial schools.
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Round 1: In the first round, only the first choices of students are considered. At each school,
students who rank the school as their first choice are assigned one at a time according
to their composite score until either there are no students who have ranked the school as
their first choice left or there are no additional seats at the school.

Round `: In round `, each student who is not yet assigned is considered at her `th choice school.
At each school with remaining seats, these students are assigned one at a time according
to their composite score until either there are no students who have ranked the school as
their `th choice left or there are no additional seats at the school.

Let Chik be the version of this mechanism that stops after k rounds. At CPS in Fall 2009,
the district employed Chi4, with only 4 rounds. After eliciting preferences from applicants
throughout the city, CPS officials computed assignments internally for discussion. The Chicago
Sun-Times reported on November 12, 2009:

Poring over data about eighth-graders who applied to the city’s elite college preps,
Chicago Public Schools officials discovered an alarming pattern.

High-scoring kids were being rejected simply because of the order in which they listed
their college prep preferences.

“I couldn’t believe it,” schools CEO Ron Huberman said. “It’s terrible.”

CPS officials said Wednesday they have decided to let any eighth-grader who applied to
a college prep for fall 2010 admission re-rank their preferences to better conform with a
new selection system.

To help understand this quote, let us consider the situation for an applicant who is interested
in applying to both Northside and Whitney Young, two of Chicago’s most competitive college
preps. Under Chik, it is possible that a student who ranks Northside and Whitney Young in
that order ends up unassigned, while had she only ranked Whitney Young, she would have been
assigned. If the student does not have a high enough composite score to obtain a placement at
Northside, then when she ranks Northside and Whitney Young, she will only obtain a seat at
Whitney Young if there are seats left over after the first round. This scenario is unlikely given
the popularity of that school, so the student ends up unassigned. Had the student only ranked
Whitney Young, she would be considered alongside first choice applicants and her score may
be high enough to obtain an offer of admissions there. Hence, it is possible for a high-scoring
applicant to be rejected from a school because of the order in which preferences are listed.

The Chicago Sun-Times article continues:
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Previously, some eighth-graders were listing the most competitive college preps as their
top choice, forgoing their chances of getting into other schools that would have accepted
them if they had ranked those schools higher, an official said.

Under the new policy, Huberman said, a computer will assign applicants to the highest-
ranked school they qualify for on their new list.

“It’s the fairest way to do it.” Huberman told the Chicago Sun-Times editorial board
Wednesday.

After eliciting preferences under mechanism Chi4 but not reporting assignments to appli-
cants, CPS officials announced new selection system that works as follows:

The student with the highest composite score is placed into her top choice. The
student with the next highest score obtains her top choice among those she ranked
with remaining capacity. If there are no schools left with remaining capacity, then
the student is unassigned. The mechanism continues with the student with the next
highest composite score until either all schools are filled or each student is processed.

Let Sdk be the version of the mechanism where only the first k choices of a student’s rank
order list are considered. When all choices on a student’s rank order list are considered, it is
well known that this serial-dictatorship mechanism is strategy-proof. Indeed, in the letter
sent from CPS to all students who submitted an application under Chi4, the district explains:

... the original application deadline is being extended to allow applicants an opportunity
to review and re-rank their Selection Enrollment High School choices, if they wish. It is
recommended that applicants rank their school choices honestly, listing schools in the
order of their preference, while also identifying schools where they have a reasonable
chance of acceptance.

It would be unnecessary for students to consider what schools they have a reasonable chance
of acceptance at if all choices were considered in this mechanism because the serial-dictatorship
is strategy-proof. But when only a subset of choices are considered, a student’s likelihood of
acceptance becomes an important consideration, and a student may obtain a more preferred
assignment by manipulating her preferences. Just as the old Chicago mechanism, Sdk is also
manipulable.

These two mechanisms are versions of widely studied assignment mechanisms for assigning
students to schools. As we have already mentioned the new mechanism adopted in Chicago is a
variant of a serial-dictatorship, where only the first four choices are considered. The old Chicago
mechanism is a variant of the Boston mechanism that was used by Boston Public Schools until
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June 2005, with two important differences. First, although there are nine selective high schools
in Chicago, the mechanism considers only the top four choices on a student’s application form.
This was not a feature of Boston’s old school choice system, where all of a student’s choices
were potentially considered. Second, in Chicago the priority ranking of applicants is the
same at all schools and it is based on student composite scores. Under the Boston mechanism
priority rankings of applicants potentially differ across schools. (In the case of Boston Public
Schools, these rankings depend on sibling and walk zone priority.)

Any version of the Boston mechanism, including the version that is abandoned in Chicago, is
manipulable. This shortcoming evidently played a role in its elimination in Chicago. However,
the new mechanism in Chicago is also manipulable and the school district appears to be aware
of this fact since it explicitly suggests that applicants list schools where they have a reasonable
chance of acceptance. CPS officials must have felt that the old mechanism is more vulnerable
to manipulation. Our first result justifies this point of view.

Proposition 1. Suppose there are at least k schools and let k > 1. The old Chicago mechanism
(Chik) is more manipulable than truncated serial-dictatorship (Sdk) CPS adopted in 2009.

We find it remarkable that one of the largest public school districts in the US abandoned a
mechanism after about 14,000 participants submitted their preferences citing reasons like those
in the newspaper article.5 The outrage expressed in the quotes from the Chicago Sun-Times
suggests that the old mechanism was considered quite undesirable. Our next result allows to
formalize the sense in which the old mechanism stands out among other reasonable mechanisms.

A desirable goal of a student assignment mechanism is to produce a “fair” outcome. One ba-
sic fairness notion in the context of priority-based student placement was proposed by Balinski
and Sönmez (1999) and it is based on the well-known stability notion for two-sided matching
markets: If student i prefers school s to her assignment µ(i) and under matching µ, either
school s has a vacant seat or is assigned another student with lower composite score, then stu-
dent i may have a legitimate objection to her assignment. An individually rational matching
that cannot be blocked by such a pair (i, s) is a stable matching.

The notion of stability has long been studied in the literature on two-sided matching prob-
lems for both normative and positive reasons (see Roth and Sotomayor 1990). In the operations
research literature, the stability condition is often treated a sort of feasibility requirement and
two-sided matching problems are often described as the “stable matching problem.” And yet
many school choice mechanisms do not produce stable outcomes. That is perhaps why there is a
long gap between the introduction of two-sided matching problems by Gale and Shapley (1962)
and formal analysis of school choice mechanisms by Abdulkadiroğlu and Sönmez (2003). The
old CPS mechanism (Chik) is one of those mechanisms that is not stable. A key reason why

5We only because aware of the policy change in Chicago after this newspaper article. Since then, we have
corresponded with CPS officials.
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so many school districts use mechanisms that fail stability is that many school districts wish to
pay special attention to the first choices of applicants. For instance, the class of mechanisms
recently banned in England are known as “first preference first” mechanisms. This observation
motivates the following definition.

Define matching µ to be strongly unstable if there is a student i and school s such that
student i is not assigned to s under µ, student i’s top choice is school s, and either school s has
a vacancy or there is another student assigned there with lower composite score. A matching is
weakly stable if it is not strongly unstable. This notion is a relaxation of stability because a
student is allowed to block a matching only with its top choice school. While there are quite a
few school districts that use unstable mechanisms, we are unaware of any school district which
prioritizes students at schools with some criteria and yet uses a mechanism that fails weak
stability. In that sense weak stability is a natural requirement in the context of priority-based
student admissions. In particular, both the old abandoned CPS mechanism in 2009 and its
replacement are weakly stable.

We are ready to present our next result which may explain why CPS CEO Ron Huberman
was frustrated enough with the mechanism in 2009 to abandon it in the middle of the assignment
process.

Theorem 1. Suppose each student has a complete rank ordering and k > 1. The old CPS
mechanism (Chik) is at least as manipulable as any weakly stable mechanism.

We assume that students have complete rank orderings to keep the proof relatively simple.
It is possible to state a version of this result without this assumption, but at the expense of
significant expositional complexity. This and all other proofs are contained in the appendix.

Based on Proposition 1 and Theorem 1, the new mechanism in Chicago is an improvement
in terms of discouraging manipulation. That being said, the lack of efficiency in the 2009
mechanism is due to constraining choices. Any mechanism that restricts reported student
preferences to only 4 choices suffers a potential efficiency loss. Moreover, it is possible to have
a completely non-manipulable system (a strategy-proof one) by not constraining the choices of
applicants. These observations beg the question of what Chicago Public Schools should do in
future years. For the 2010-2011 school year, Chicago Public Schools decided to consider up to
6 (out of a total of 9 choices) from applicants.

In the next section, we demonstrate that even though the new 2010 mechanism is still
manipulable, its incentive properties are an improvement over the 2009 mechanism under our
notion.
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3.2 Comparing Constrained Versions of Student-Optimal Stable
Mechanism

Understanding the properties of constrained school choice mechanisms is relevant for districts
other than Chicago. To describe these issues, it is necessary to present a richer model of student
assignment where students may be ordered in different ways across schools.

Vulnerability of school choice mechanisms to manipulation played a role in the adoption of
new student assignment mechanisms not only in Chicago, but also in Boston and New York
City.6 An important difference between Chicago and these two cities is that the priority rankings
of students are not the same at all schools. To handle this situation, both cities currently employ
versions of the student-optimal stable mechanism.7 For given student preferences and list of
priority rankings at schools, the outcome of this mechanism can be obtained with the following
student-proposing deferred acceptance algorithm:

Round 1: Each student applies to her first choice school. Each school rejects the lowest-ranking
students in excess of its capacity and all unacceptable students among those who applied
to it, keeping the rest of students temporarily (so students not rejected at this step may
be rejected in later steps.)

In general, at

Round `: Each student who was rejected in Round `-1 applies to her next highest choice (if any).
Each school considers these students and students who are temporarily held from the
previous step together, and rejects the lowest-ranking students in excess of its capacity
and all unacceptable students, keeping the rest of students temporarily (so students not
rejected at this step may be rejected in later steps.)

The algorithm terminates either when every student is matched to a school or every un-
matched student has been rejected by every acceptable school. Since there are a finite number
of students and schools, the algorithm terminates in a finite number of steps. Gale and Shapley
(1962) show that this algorithm results in a stable matching that each student weakly prefers
to any other stable matching. Moreover, Dubins and Freedman (1981) and Roth (1982) show
that truth-telling is a dominant strategy for each student under this mechanism. Their result
implies that student-optimal stable mechanism is strategy-proof in the context of school choice
where only students are potentially strategic agents.

6More details on these cases is presented in Abdulkadiroğlu, Pathak, Roth, and Sönmez (2005) and Abdulka-
diroğlu, Pathak, and Roth (2005).

7Abdulkadiroğlu and Sönmez (2003) first advocated using the celebrated student-optimal stable mechanism
(Gale and Shapley 1962) when priorities differ across schools. Earlier, Balinski and Sönmez (1999) advocated
the use of student-optimal stable mechanism in a centralized student placement model where priorities at schools
are determined by standardized exams.
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Interaction of matching theorists with officials at New York City and Boston lead to adoption
of versions of student-optimal stable mechanism by these school districts in 2003 and 2005,
respectively. In New York City, however, the version of the mechanism adopted only allows
students to submit a rank order list of 12 choices. Based on the strategy-proofness of the
student-optimal stable mechanism, the following advice was given to students:

You must now rank your 12 choices according to your true preferences.

For a student with more than 12 acceptable schools, truth-telling is no longer a dominant
strategy under this version of the mechanism. In practice, between 20 to 30 percent of students
rank 12 schools, even though there are over 500 choice options in New York City.8 This
issue was first theoretically investigated by Haeringer and Klijn (2009) and experimentally by
Calsamiglia, Haeringer, and Klijn (2010).

Some authorities using the student-optimal stable mechanism have increased the number
of choices participants can express. For instance, Ajayi (2011) reports that the secondary
school admission system in Ghana moved from GS3 to GS4 in 2007, and then to GS6 in 2008.
Newcastle England switched from GS3 to GS4 by 2010. We next show that the greater the
number of choices a student can make, the less vulnerable the constrained version of student-
optimal stable mechanism is to manipulation. LetGS be the student-optimal stable mechanism,
and GSk be the constrained version of the student-optimal stable mechanism where only the
top k choices are considered.

Proposition 2. Let ` > k > 0 and suppose there are at least ` schools. Then GSk is more
manipulable than GS`.

When there is a unique priority ranking across all schools (as in the case of Chicago),
mechanism GSk reduces to mechanism Sdk. Hence the following corollary to Proposition 2 is
immediate:

Corollary 1. Let ` > k > 0. Mechanism Sdl is more manipulable than mechanism Sdk.

Just like the change in length list in Newcastle England, Chicago switched from Sd4 to Sd6 in
2010. In terms of promoting truth-telling, this is a further improvement although the uncon-
strained version of the mechanism would completely eliminate the possibility of manipulation.

8These details together with the entire description of the new assignment procedure is contained in Abdulka-
diroğlu, Pathak and Roth (2009).
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3.3 The Ban of the Boston Mechanism in England

The mechanism that was abandoned in Chicago midstream in 2009 is a special case of the
widely studied Boston mechanism. For given student preferences and school priorities, the
outcome of the Boston mechanism is determined with the following procedure:

Round 1: Only the first choices of students are considered. For each school, consider the students
who have listed it as their first choice and assign seats of the school to these students one
at a time following their priority order until there are no seats left or there is no student
left who has listed it as her first choice.

In general, at

Round `: Consider the remaining students. In Round `, only the `th choices of these students are
considered. For each school with still available seats, consider the students who have
listed it as their `th choice and assign the remaining seats to these students one at a time
following their priority order until there are no seats left or there is no student left who
has listed it as her `th choice.

The procedure terminates when each student is assigned a seat at a school.

Aside from Boston, variants of the mechanism have been used in several U.S. school dis-
tricts including: Cambridge MA, Charlotte-Mecklensburg NC, Denver CO, Miami-Dade FL,
Minneapolis MN, Providence RI, and Tampa-St. Petersburg FL.9 However, the U.S. is not the
only country where versions of the Boston mechanism are used to assign students to public
schools. As we discussed in the Introduction, a large number of English Local Authorities
had been using what they referred to as “first preference first” systems until it became ille-
gal in 2007. Formally, a first preference first (FPF) mechanism is a hybrid between the
student-optimal stable mechanism and the Boston mechanism: under this mechanism, a school
is either a first preference first school or an equal preference school, and the outcome
is determined by the student-proposing deferred acceptance algorithm, where

1) the base priorities for each student are used for each equal preference school, whereas

2) the base priorities of students are adjusted so that

• any student who ranks school s as his first choice has higher priority than any student
who ranks school s as his second choice,

9Many school districts using variants of the Boston mechanism limit the number of schools that participants
may rank. In Providence Rhode Island, students may only list four schools (out of 28 schools), while in
Cambridge Massachusetts, students may only list three schools (out of 9 schools).
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• any student who ranks school s as his second choice has higher priority than any
student who ranks school s as his third choice,

• . . .

for each first preference first school.10

Observe that the Boston mechanism is a special case of this mechanism when all schools are
first preference first schools and the student-optimal stable mechanism is a special case when
all schools are equal preference schools.

For given fixed sets of first preference first schools and equal preference schools, let Fpf
be the first preference first mechanism and Fpfk be the version that only considers the top k
student choices. Let β be the Boston mechanism and βk be the Boston mechanism when only
the top k student choices are considered. It will be convenient to let a matching in this and the
next section indicate not only which school a student is assigned, but also which students are
assigned to a school. Let Fpfs(P ) denote the set of students assigned to school s by the Fpf
mechanism under profile P , and similarly βs(P ) denote the set of students assigned to school
s by the Boston mechanism under profile P .

One of the key reasons for the ban of the first preference first mechanism (and hence the
Boston mechanism as well) was the strong incentives it gives parents to distort their submitted
preferences. Even before the 2007 ban, this issue was central in several debates comparing the
first preference first mechanism with the student-optimal stable mechanism (known as equal
preference system in England). The following statement from the Coldron, et. al (2008) report
prepared for Department for Children, Schools and Families summarizes what is at the heart
of the debate:

Further, the difference between the two systems in the numbers of parents gaining their
first preferences should not be interpreted as necessarily meaning that equal preference
systems lead to less parental satisfaction overall. In a first preference first area, if the
schools a parent puts as first, second or third are oversubscribed they risk not getting in
to their first preference school and are also likely not to get their second or third choice
because they do not fit the first preference over-subscription criterion of those schools.
This means that the first preference system to some extent restricts parents’ room for
manoeuvre, reduces their options and constrains them to put preferences for schools
that are not their real preferred choice.

According to the report, a large number of Local Authorities in England abandoned the
first preference first mechanism as a result of the 2007 ban. Table 1 provides a list of districts
where we have been able to obtain documentation on systems, building on a large list due to

10The relative priority ranking of two students do not change, unless one ranks the first priority first school
higher than the other.
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Coldron (2006). The list shows that Local Authorities switched from a constrained version
of the first preference first mechanism to a constrained version of the student-optimal stable
mechanism, where the constraint is typically greater in more populated areas like London. As
in the case of Chicago, the vulnerability of the Boston mechanism to manipulation resulted in
its removal throughout England along with its first preference first generalizations, while several
Local Authorities adopted a constrained version of the student-optimal stable mechanism.

Our next result shows that not only is the Fpf mechanism more manipulable than the
student-optimal stable mechanism, its constrained version is more manipulable than the con-
strained version of the student-optimal stable mechanism. This result suggests that recent
reforms throughout the England involve adoption of less manipulable mechanisms.

Proposition 3. Suppose there are at least k schools where k > 1. Then Fpfk is more manip-
ulable than GSk.

The following result is immediate.

Corollary 2. Suppose there are at least k schools where k > 1. Then βk is more manipulable
than GSk.

Another corollary that immediately follows from Proposition 2 and Proposition 3 is of
interest based on the reforms in Newcastle and Kent, which both moved from β3 to GS4.

Corollary 3. Let ` > k > 0 and suppose there are at least ` schools. Then Fpfk is more
manipulable than GS`.

When each school orders applicants using the same criteria, the old Chicago mechanism
Chik is a special case of the βk and the new Chicago mechanism Sdk is a special case of GSk.
As a result, Proposition 1 is a corollary of Proposition 3.

3.4 Seattle’s Unusual Experience

Chicago and England are the only places we know about where the Boston mechanism has
stopped being used, aside from Boston itself. The fact that these changes occurred without
economists’ prompting might suggest that the debate over the Boston mechanism has now been
resolved. Nevertheless, the majority of U.S. school districts continue to employ versions of the
Boston mechanism, and in some districts the debate about its merits rages on.11

Seattle Public Schools has undertaken a series of important changes to their student as-
signment system. After the first draft of this paper, we learned that Seattle switched from the
Boston mechanism to the student-optimal stable mechanism in 1999, though it was called the

11For another example, see Abebe (2009) describing the debate in Cambridge Public Schools.
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Barnhart-Waldman (BW) amendment in honor of two school board members who proposed
the modification. But, it seems that this change was not advertised well, if at all, or well
understood by participants.

There are many symptoms that the BW amendment was not well-understood, even though
strategy-proof mechanisms allow for straightforward advice. For instance, in a court challenge
to the Seattle choice plan by Parents Involved in Community Schools, a case eventually decided
by the U.S. Supreme Court, confusion surrounding the BW amendment came up in the school
board president’s deposition.12 Eventually, in 2007, a parent obtained the computer code and
verified that the BW amendment actually corresponds to the student-optimal stable mechanism
(MacGregor 2007). Interestingly, researchers did not learn about the change until Seattle
returned to the Boston mechanism in 2009.13

At first glance, the return to the Boston mechanism may seem to contradict the desirability
of reducing a school choice mechanism’s vulnerability to manipulation. However, there are other
factors at play and the recent Seattle decision generated considerable controversy. Opponents
of going back to the Boston mechanism raised points like those discussed in Boston, Chicago,
and England. For instance, in her parent guide to the Seattle choice system, Walkup (2009)
writes:

The new choice algorithm can punish naive players. The best strategy for listing
school choices for the old algorithm has been to list them in your true order of
preference. You did not need to know how likely you were to get into a school to
know the right order to list them.

The Seattle situation highlights the importance of considering communication and guidance as
key parts of a mechanism’s design. When a mechanism is vulnerable to manipulation, it is not
easy to provide advice. Walkup (2009) continues:

12Page 58 of the U.S. Court of Appeals for the Ninth Circuit, No. 01-35450, Parents Involved in Community
Schools vs. Seattle School District, No.1, 2001 states:

Q: Can you explain for me what the Barnhart/Waldman Amendment is and how it works?

A: If I could I’d be the first. The Barnhart/Waldman – this is my understanding. The Barnhart/Waldman Amendment
affects the way that choices are processed. Before we adopted that amendment, all the first choices were processed in one
batch and assignments made. If you did not get your first choice, it is my understanding that all the students who did
not get the first choice fell to the bottom of the batch processing line, and then they would process the second choices,
et cetra. Barnhart/Waldman says that after all the first choices are processed, in the next batch, if you don’t get your
first choice, you don’t fall to the bottom of the list but you are then processed, your second choice, with all the other
second choices together. The result is that instead of a high degree of certainty placed - or of value placed on first choice,
people can list authentically their first, second and third choices and have a higher degree of getting their second and
third choice if they do not get their first choice. Now, was that clear as mud?

13The first reference to Seattle is in Abdulkadiroglu, Che and Yasuda (2011), who describe the episode as the
“clock turning back.”
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During the first few years of the new plan it is likely that many families will still be
repeating the previously correct advice to list schools in the actual order you prefer
them.

The Seattle case also makes clear that additional benefits of a strategy-proof mechanism are
lost with a manipulable mechanism. Walkup continues:

Since the algorithm is no longer blind to strategy, many people will use strategy
when listing schools. The district will therefore no longer have accurate information
about which programs families prefer.

The fact that family groups were lobbying against the elimination of the BW amendment
suggests that the Seattle change was deliberate. Intrigued by this episode, we corresponded with
some of the school committee members involved.14 While they mentioned a few hard-to-square
reasons (such as computer implementation costs), one suggested that the BW amendment
encouraged mobility among students since parents could freely express their choices. By forcing
families to adopt more conservative strategies such as ranking their neighborhood schools, the
policy change could discourage student movement and therefore reduce transportation costs.

As a result, we do not believe that Seattle’s return to the Boston mechanism is a counter-
example to the desirability of a less manipulable mechanism, but rather illustrates that mecha-
nisms can change for multiple reasons. Surely, the original motivation for the BW amendment
involved limiting manipulation, and the district may not have reaped the benefits of the earlier
policy change given the ongoing confusion. It appears that some policymakers were uncomfort-
able with the idea of school choice in the first place, but they did not succeed in bringing back
a neighborhood school system. Returning to the Boston mechanism was a politically attractive
alternative to entirely giving up school choice since it could decrease mobility across neighbor-
hood zones. Whether Seattle continues with the Boston mechanism in future years remains to
be seen.

4 Agent-by-Agent Comparisons

4.1 Definitions

So far we compared real-life mechanisms based on set inclusion of their associated vulnerable
profiles. Our next application involves the following stronger comparison of mechanisms.

Definition 4. A mechanism ψ is as strongly manipulable as mechanism ϕ if for any profile
mechanism ϕ is vulnerable, ψ is (not only vulnerable but also) manipulable by any player who
can manipulate ϕ.

14Not all committee members were willing and available to discuss the issue with us.
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Definition 5. A mechanism ψ is strongly more manipulable than mechanism ϕ if

1. ψ is as strongly manipulable as mechanism ϕ, and

2. there is a set of players I, a set of outcomes A, and a profile t where t is vulnerable under
ψ but not under ϕ.

Clearly if mechanism ψ is strongly more manipulable than mechanism ϕ, then mechanism ψ is
also more manipulable than mechanism ϕ.

4.2 Two-Sided Matching Markets

Our next application pertains to college admissions model of Gale and Shapley (1962). Let J be
the set of students with generic element j, C be the set of colleges with generic element c, and
the set of players are I = J ∪C. Here, both sides of the market are active players, in that both
submit preference lists over the other side of the market. Following most of the literature, we
assume that colleges have responsive preferences (Roth 1985). That is, the ranking of a student
is independent of her colleagues, and any set of students exceeding the quota is unacceptable.
Given this assumption, we sometimes abuse notation and let Pc denote the preferences of college
c defined over singleton student sets and the empty set.

As we have discussed in the context of school choice, truth-telling is a dominant strategy
for each student under the student-optimal stable mechanism. We denote this mechanism as
GSJ . Gale and Shapley (1962) show that there exists an analogous stable matching that favors
colleges. We refer to this mechanism as the college-optimal stable mechanism, and denote it as
GSC.

While truth-telling is a dominant strategy for each student under GSJ , an analogous result
does not hold for colleges under GSC. Indeed, there is no stable mechanism where truth-telling
is a dominant strategy for colleges in the college admissions model (Roth 1985). Our next result
allows us to compare stable mechanisms by their vulnerability to manipulation for colleges. We
need to extend definitions 4 and 5 before we present our next result. Fix a subset of agents
I ′ ⊂ I.

A mechanism ψ is as strongly manipulable as mechanism ϕ for members of I ′ if
for any profile t ∈ T , and any agent i ∈ I ′,

∃t′i ∈ Ti s.t. ϕ(t′i, t−i)Pi ϕ(t) =⇒ ∃t∗i ∈ Ti s.t. ψ(t∗i , t−i)Pi ψ(t).

A mechanism ψ is strongly more manipulable than mechanism ϕ for members of I ′

if

1. ψ is as strongly manipulable as ϕ for members of I ′, and
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2. there is a set of players I, a set of outcomes A, and a profile t where ψ can be manipulated
by an agent in I ′ ⊆ I although ϕ cannot.

Results in this section easily follow from the following Lemma.

Lemma 1. Fix a set of agents I ′ ⊂ J ∪ C. Let ϕ, ψ be two stable mechanisms such that, for
any preference profile P , and any agent i ∈ I ′,

ϕi(P ) Ri ψi(P ).

Then mechanism ψ is as strongly manipulable as mechanism ϕ for members of I ′.

We are ready to present our next result.

Proposition 4. GSJ is strongly more manipulable than GSC for colleges.

Another natural question is whether it is possible to compare vulnerability of stable mecha-
nisms to manipulation when both students and colleges are able to manipulate. Unfortunately,
no comparison is possible because of the well-known conflict of interest between the two sides
of the market. This tension is apparent in the following result.

Theorem 2. Let ϕ be an arbitrary stable mechanism. Then

a) ϕ is as strongly manipulable as GSC for colleges,

b) GSJ is as strongly manipulable as ϕ for colleges, and

c) GSC is as strongly manipulable as ϕ for students.

These results are related to discussions about the National Resident Matching Program
(NRMP), the job market clearinghouse that annually fills more than 25,000 jobs for new physi-
cians in the United States. Prior to 1998, its mechanism of choice was the college-optimal
stable mechanism under which truth-telling is not a dominant strategy for students or colleges.
In the mid-1990s, the NRMP came under increased scrutiny by students and their advisors
who believed that the NRMP did not function in the best interest of students and was open to
the possibility of different kinds of strategic behavior (Roth and Rothblum 1999). The mecha-
nism was changed to one based on the student-optimal stable mechanism (Roth and Peranson
1999). One rationale was that truth-telling is a dominant strategy for students. For instance,
the minutes of the Committee of the American Medical Student Association (AMSA) and the
Public Citizen Health Research Group (cited in Ma 2010) state:

...Since it is impossible to remove all incentives for hospitals to misrepresent, it would be
best to choose the student-optimal algorithm to remove incentives, at least for students.
In other words, within the set of stable algorithms, you either have incentives for both
the hospitals and the students to misrepresent their true preferences or only for the
hospitals.
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Theorem 2 and Proposition 4 imply that an unavoidable consequence of selecting a stable
mechanism that removes incentives for manipulation among students is that the mechanism is
the most vulnerable to manipulation for colleges.

5 Comparisons based on Intensity of Manipulation

5.1 Definitions

All of our applications up to this point are for models where agents are endowed with ordinal
preferences. The magnitude of gain from a manipulation is not well-defined in these models
without a cardinal utility representations. In many models, however, agents are endowed
with cardinal preferences and one may want to compare magnitude of gain from potential
manipulations when comparing two competing mechanisms for such models. We make one
observation before proposing such a notion. To avoid interpersonal utility comparisons, a
notion that incorporates the magnitude of manipulation will have to be even more demanding
than the stronger of our two notions. That is, to deem mechanism ψ more vulnerable to such
a notion of manipulation than mechanism ϕ,

1. any agent who can manipulate ϕ will need to manipulate ψ as well, and

2. the benefit from the latter manipulation will have to be at least as large.15

Hence one can compare fewer mechanisms with this notion (even compared to our stronger
notion). Notwithstanding, we present two important applications of this demanding notion
later in this section.

For each agent i ∈ I, let ui : A → R be a utility function that represents preferences of
agent i over the set of allocations. Having defined these cardinal preferences, we can present
the next definition:

Definition 6. A mechanism ψ is as intensely and strongly manipulable as mechanism
ϕ if for any agent i, problem t, type t′i, and arbitrarily small ε > 0,

ui
(
ϕ(t′i, t−i)

)
−ui

(
ϕ(t)

)
> 0 =⇒ ∃t∗i s.t. ui

(
ψ(t∗i , t−i)

)
−ui

(
ψ(t)

)
> ui

(
ϕ(t′i, t−i)

)
−ui

(
ϕ(t)

)
−ε.

It is worth noting that we allow the benefit from the manipulation of mechanism ψ to be
marginally smaller than the benefit from the manipulation of mechanism ϕ. This minor ad-
justment help us avoid complications associated with choice of tie-breakers in applications and
thus significantly increases the scope of our most demanding comparison.

15To avoid potential reversals associated with choice of tie-breakers, we will require the benefit from latter
manipulation to be either more or at least arbitrarily close to the benefit from the original manipulation.
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Definition 7. A mechanism ψ is intensely and strongly more manipulable than mech-
anism ϕ if

1. ψ is as intensely and strongly manipulable as mechanism ϕ, and

2. there is a set of players I, a set of outcomes A, and a profile t where t is vulnerable under
ψ but not under ϕ.

5.2 Multi-Unit Auctions

Our next application involves the auctioning of multiple units of identical objects. The U.S.
Treasury’s bond issue auctions, auctions for electricity and other commodities, and financial
market auctions such as the opening batch auctions at the NYSE, Paris, and Amsterdam
exchanges are examples of auctions involving multiple identical objects.16 We are interested in
comparing two sealed-bid auction formats. In each format, a bidder is asked to submit bids for
each of the k units indicating how much she is willing to pay for each unit.

In the discriminatory format, also known as the pay-your-bid auction, each bidder pays an
amount equal to the sum of her bids that are winning bids. The discriminatory auction is
a natural multi-unit extension of the first-price sealed bid auction. Milton Friedman (1960)
initially proposed a uniform-price auction, where all k units are sold at a “market-clearing”
price such that the total amount demanded is equal to the total amount supplied.

Formally, a seller wishes to sell k units of identical items to a set I of bidders, where |I| ≥ 2.
The bidders, who are the agents in our framework, are asked to report their valuations for the
k objects, where v`i is bidder i’s valuation for the `th unit. The vector vi = (v1

i , . . . , v
k
i ) ∈ Rk

+ is
the type of bidder i in our framework.

In both auctions we consider, each bidder submits a vector bi = (b1
i , . . . , b

k
i ) ∈ Rk

+, and the
k units are awarded to the bidders with the k highest reported valuations.17

The utility of bidder i who wins ` objects at a total cost of c is:

ui = v1
i + · · ·+ v`i − c.

We will assume that marginal values are declining for each bidder: v1
i ≥ v2

i ≥ ... ≥ vki ≥ 0.

The two payment rules we consider are:

1. Discriminatory auction: For the units awarded, the bidder pays the value declared for
each unit.

16See Krishna (2002) for more examples and discussion.
17For both the discriminatory and uniform-price auction, we adopt the convention that when there is a tie,

it is broken in favor of the bidder with the lower index i.
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2. Uniform-price auction: For the units awarded, the bidder pays the (k + 1)th highest
declared value for each unit.18

The U.S. Treasury has employed a discriminatory format since 1929 for the sale of short-
term treasury securities. In 1970s, the US Treasury also adopted a discriminatory format to
auction Treasury bonds. In 1992, the US Treasury switched to a uniform-price auction for 2
and 5 year notes and since September 1998, all Treasury auctions use the uniform price format.

Throughout these policy changes, the Treasury has been influenced by a number of argu-
ments. Milton Friedman’s influential testimony to the Joint Economic Committee of the US
Congress in 1959 argued that a uniform-price format levels the playing field by reducing the im-
portance of specialized knowledge among dealers. According to Friedman, more bidders would
be induced to bid directly in uniform-price auctions because the fear of being awarded securities
at too high a price is eliminated. Merton Miller supported this argument stating, “All of that
[gaming] is eliminated if you use the [uniform-price] auction. You just bid what you think it’s
worth.” A US government report issued around that time jointly signed by the Treasury De-
partment, SEC, and Federal Reserve Board states: “Moving to a uniform-price award method
permits bidding at the auction to reflect the true nature of investor preferences.”19

Neither the discriminatory nor the uniform-price auction is strategy-proof. In particular,
in both formats, bidders have an incentive to shade their bids. In a discriminatory auction,
bidders have an incentive to report that their bids are just above the lowest bid that wins a
unit. In a uniform-price auction, a bidder has an incentive to shade her bid for the units other
than the first one because these bids have the potential to influence the market-clearing price if
she wins. This “demand-reduction” feature of the uniform-price auction prevents it from being
strategy-proof.

The next proposition supports Milton Friedman’s original argument about the incentive
properties of the uniform-price auction relative to the discriminatory auction.

Proposition 5. The discriminatory auction is intensely and strongly more manipulable than
the uniform-price auction.

An alternative and complementary formalization of Milton Friedman’s argument is recently
given by Azevedo and Budish (2011): While both auction formats are manipulable, the discrimi-
natory auction persists to be manipulable even in large economies even though the uniform-price
auction is no longer manipulable in large economies when agents are “price-takers.”

18It is possible to consider other “market clearing” rules such as paying the kth value or paying a value
between the kth and (k + 1)th value. The comparison between formats is not sensitive to this choice.

19For more discussion on the influence of Friedman’s argument, see Malvey, Archibald and Flynn (1995) and
Ausubel and Cramton (2002).
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5.3 Keyword Auctions

Our final application involves the model for internet advertising pioneered by Edelman, Os-
trovsky and Schwarz (2007) and Varian (2006). When an Internet user enters a search term
into an online search engine, she obtains a webpage with search results and sponsored links.
The advertisements are ordered on the webpage in different positions, with an advertisement
shown at the top of the page more likely to be clicked than one at the bottom of the page. The
process by which these advertisement slots are allocated to webpages is currently one of the
largest auction markets: in 2005, Google generated more than 6 billion dollars in revenue via
their auction mechanism (Edelman et. al 2007).

Our notation and model follow Edelman, Ostrovsky and Schwarz (2007). There is a set
I of bidders, and k < |I| ordered slots on a webpage. For any ` ∈ {1, . . . , k}, slot ` has a
click-through rate of α`, where α1 > α2 > . . . > αk > 0. The type ti of bidder i is his
valuation vi ∈ R+ per click.

If bidder i wins the slot m at the cost of c, then his utility is:

ui = αmvi − c.

Edelman, Ostrovsky and Schwarz (2007) present a detailed historical overview of the origins
of this market. In 1997, Overture introduced an auction for selling Internet advertising. In the
original design, each advertiser simultaneously bids for a slot for a particular keyword. The
highest bidder receives the first slot at a price of his bid times the click-through rate of slot 1,
the second highest bidder receives the second slot at a price of his bid times the click-through
rate of slot 2, and so on. Overture’s search platform was adopted by major search engines
including Yahoo! and MSN. This auction format is known as the Generalized First Price
(GFP) auction.

In February 2002, Google introduced its own pay-per-click system, AdWords Select, based
on a different payment rule. The highest bidder receives the first slot at a price of the second
highest bid times the click-through rate of slot 1, the second highest bidder receives the second
slot at a price of the third highest bid times the click-through rate of slot 2, and so on. This
auction format has come to be known as the Generalized Second Price (GSP) auction.
Once Google introduced this new format, many search engines including Yahoo!/Overture also
switched to the GSP.

While neither mechanism is strategy-proof, Edelman, Ostrovsky, and Schwarz (2007) argue
that

The second-price structure makes the market more user friendly and less susceptible to
gaming.

Our final result formalizes their insight.
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Proposition 6. The Generalized First Price Auction is intensely and strongly more manipu-
lable than the Generalized Second Price Auction.

6 Conclusion

Recent school admission reforms are motivated in part by the desire to reduce strategic con-
siderations among participants, even though many new mechanisms are still not completely
immune to manipulation. These changes motivate the methodology we propose to rank mech-
anisms by their vulnerability to manipulation. In Chicago, the abandoned mechanism is at
least as manipulable as any other weakly stable mechanism. In England, the 2007 School Code
outlawed first preference first mechanisms and numerous districts have adopted an equal pref-
erence system. According to our notion, numerous English districts have done away with more
manipulable mechanisms.

The changes to school assignment systems in recent years are widespread. The list of reforms
in Table 1 implies that hundreds of thousands of students have been impacted. Every listed
change, except Seattle, involves a move towards a less manipulable mechanism. It is therefore
clear that vulnerability to manipulation is perceived as an undesirable feature of school choice
mechanisms.

While school choice reforms provide our main motivation, the methodology has applications
in other matching and assignment models, including the college admissions model. We have also
illustrated applications for auction settings, and examined manipulation definitions that take
intensity of manipulation into account. Certainly, we haven’t exhausted possible applications
of these concepts. For instance, work in progress by Dasgupta and Maskin (2010) explores a
similar idea in voting problems, comparing Condorcet and Borda rules, and similar ideas have
been recently studied in problem of fair division with indivisible objects (see, e.g., Andersson,
Ehlers, and Svensson (2010)).

The case studies we have explored all involve widespread condemnation of the Boston mech-
anism, and the participants themselves (and not matching theorists) advocated re-organizing
market designs. In this respect, the school admissions reforms parallel changes in marketplace
rules for the placement of medical residents in the early 1950s documented by Roth (1984).
Following Boston Public Schools’ abandonment of the mechanism in 2005, there has been a
renewed interest in understanding its properties. Some researchers have cautioned against a
hasty rejection of the Boston mechanism in favor of the student-optimal stable mechanism (Ab-
dulkadiroğlu, Che and Yasuda 2011, Featherstone and Niederle 2011, Miralles 2008). When
interpreted through the lens of the public and policymaker’s revealed preferences, events in
Chicago and England weigh against the desirability of the Boston mechanism.

It is worth emphasizing that vulnerability to manipulation is not the only criterion to
consider when comparing mechanisms. That being said, manipulation seems to have been a
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critical reason for the 2009 policy change in Chicago and changes throughout England. Of
course, it is important to consider different properties of a mechanism and the alternatives (as
well as political and practical issues) when deciding on the best mechanism. In situations where
strategy-proof mechanisms do not have obvious drawbacks, as one might argue for eliminating
restrictions on the number of choices allowed in school choice, an interesting question for future
work is to understand the reasons they are not used.
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Allocation	
  System Year From To
Manipulable	
  

(More	
  or	
  Less?) Source Allocation	
  System Year From To
Manipulable	
  

(More	
  or	
  Less?) Source
Boston	
  Public	
  Schools	
  (K,	
  6,	
  9) 2005 Boston GS Less A,B,E 	
  	
  Merton 2006 FPF6 GS6 Less A,D
Chicago	
  Selective	
  High	
  Schools 2009 Boston4 SD4 Less A,B,C 	
  	
  Newcastle 2005 Boston3 GS3 Less A	
  

2010 SD4 SD6 Less A,B,C 2010 GS3 GS4 Less A	
  
Ghana	
  -­‐	
  Secondary	
  Schools 2007 GS3 GS4 Less E 	
  	
  North	
  Lincolnshire 2007* FPF3 GS3 Less A,D

2008 GS4 GS6 Less E 	
  	
  North	
  Somerset 2007* FPF3 GS3 Less A,D
Seattle	
  Public	
  Schools 1999 Boston GS Less A,B,C,E,F 	
  	
  North	
  Tyneside 2007* FPF3 GS3 Less A,D

2009 GS Boston More A,B,C,F 	
  	
  Oldham 2007* FPF3 GS3 Less A,D
	
  	
  Peterborough 2007* FPF3 GS3 Less	
   A,D

England 	
  	
  Plymouth 2007* FPF3 GS3 Less A,D
	
  	
  Bath	
  and	
  North	
  East	
  Somerset 2007* FPF3 GS3 Less A,	
  D 	
  	
  Poole 2007* FPF3 GS3 Less A,D
	
  	
  Bedford	
  and	
  Bedfordshire 2007* FPF3 GS3 Less A,D 	
  	
  Portsmouth 2007* FPF3 GS3 Less D
	
  	
  Blackburn	
  with	
  Darwen 2007* FPF3 GS3 Less A,D 	
  	
  Richmond 2005 FPF6 GS6 Less D
	
  	
  Blackpool 2007* FPF3 GS3 Less D 	
  	
  Sefton	
  primary 2007 Boston3 GS3 Less A,D
	
  	
  Bolton 2007* FPF3 GS3 Less A,D 	
  	
  Sefton	
  secondary 2007 FPF3 GS3 Less A,D
	
  	
  Bradford 2007* FPF3 GS3 Less A,D 	
  	
  Slough 2006* FPF3 GS3 Less D
	
  	
  Brighton	
  and	
  Hove 2007 Boston3 GS3 Less A,C,D,E 	
  	
  Somerset 2007* FPF3 GS3 Less A,D
	
  	
  Calderdale 2006 FPF3 GS3 Less A,C 	
  	
  South	
  Gloucestershire 2007* FPF3 GS3 Less A,D
	
  	
  Cornwall 2007* FPF3 GS3 Less D 	
  	
  South	
  Tyneside 2007* FPF3 GS3 Less D
	
  	
  Cumbria 2007* FPF3 GS3 Less D 	
  	
  Southhampton 2007* FPF3 GS3 Less D
	
  	
  Darlington 2007* FPF3 GS3 Less D 	
  	
  Stockton 2007* FPF3 GS3 Less A,	
  D
	
  	
  Derby 2005* FPF4 GS4 Less A,D 	
  	
  Stoke-­‐on-­‐Trent 2007* FPF3 GS3 Less D
	
  	
  Devon 2006* FPF3 GS3 Less A,D 	
  	
  Suffolk 2007* FPF3 GS3 Less D
	
  	
  Durham 2007 FPF3 GS3 Less A,D 	
  	
  Sunderland 2007* FPF3 GS3 Less D
	
  	
  Ealing 2006* FPF6 GS6 Less A,D 	
  	
  Surrey 2007 FPF3 GS3 Less A,D
	
  	
  East	
  Sussex 2007 Boston3 GS3 Less A,D 2010 GS3 GS6 Less A
	
  	
  Gateshead 2007* FPF3 GS3 Less D 	
  	
  Sutton 2006 FPF6 GS6 Less A,D
	
  	
  Halton 2007* FPF3 GS3 Less A,D 	
  	
  Swindon 2007* FPF3 GS3 Less D
	
  	
  Hampshire 2007 FPF3 GS3 Less A,D 	
  	
  Tameside 2007* FPF3 GS3 Less D
	
  	
  Hartlepool 2007 FPF3 GS3 Less A,D 	
  	
  Telford	
  and	
  Wrekin 2007* FPF3 GS3 Less D
	
  	
  Isle	
  of	
  Wright 2007* FPF3 GS3 Less D 	
  	
  Torbay 2007* FPF3 GS3 Less D
	
  	
  Kent 2007 Boston3 GS4 Less A,D 	
  	
  Warrington 2007* FPF3 GS3 Less D
	
  	
  Kingston	
  upon	
  Thames 2007* FPF3 GS4 Less A 	
  	
  Warwickshire 2007* FPF7 GS7 Less D
	
  	
  Knowsley 2007* FPF3 GS3 Less A,D 	
  	
  Wilgan 2007* FPF3 GS3 Less D
	
  	
  Lancashire 2007* FPF3 GS3 Less A,D
	
  	
  Lincolnshire 2007* FPF3 GS3 Less A,D Wales
	
  	
  Luton 2007* FPF3 GS3 Less D 	
  	
  Wrexham	
  County	
  Borough 2011 FPF3 GS3 Less A
	
  	
  Manchester 2007* FPF3 GS3 Less A,D

Notes.	
  *	
  For	
  changes	
  in	
  the	
  2007	
  code,	
  an	
  asterisk	
  indicates	
  that	
  we	
  assume	
  that	
  the	
  number	
  of	
  choices	
  allowed	
  has	
  not	
  changed.	
  	
  A	
  -­‐	
  Documentation	
  from	
  schools	
  (brochures)	
  or	
  official	
  policy	
  minutes;	
  B	
  -­‐	
  Direct	
  communication	
  with	
  school	
  officials;	
  C	
  -­‐	
  Documentation	
  from	
  press	
  clippings;	
  D	
  -­‐	
  Coldron	
  
report;	
  E	
  -­‐	
  Other	
  academic	
  papers;	
  F	
  -­‐	
  Other	
  online	
  materials.	
  	
  In	
  some	
  cases,	
  we	
  do	
  not	
  know	
  the	
  exact	
  year	
  the	
  mechanism	
  changed,	
  the	
  years	
  correspond	
  to	
  the	
  last	
  possible	
  year.	
  	
  The	
  appendix	
  includes	
  sourcing	
  for	
  all	
  mechanism	
  changes.

Table	
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  School	
  Admissions	
  Reforms



A Proofs [For Online Publication]

Theorem 1. Suppose each student has a complete rank ordering and k > 1. The old Chicago
Public Schools mechanism (Chik) is at least as manipulable as any weakly stable mechanism.

Proof. Fix a problem P and let ϕ be an arbitrary mechanism that is weakly stable. Suppose
that Chik is not manipulable for problem P .

Claim 1: Any student assigned under Chik(P ) receives her top choice.
Proof. If not, since each student has a complete rank order list, |I| > Q, k > 1, there

must be a student that is assigned to a school s he has not ranked first. Consider the highest
composite score student i who is unassigned. Student i can rank school s first and will be
assigned a seat there in the first round of Chik mechanism instead of some student who has
not ranked school s first. That contradicts Chik is not manipulable for problem P .

Claim 2. The set of students who are assigned a seat under Chik(P ) is equal to the set of
top Q composite score students.

Proof. If not, there is a school seat assigned to a student j who does not have a top Q score.
Let student i be the highest scoring top Q student who is not assigned. Since student i has
a complete rank order list, she can manipulate Chik by ranking student j’s assignment as her
top choice again contradicting Chik is not manipulable for problem P .

Since each of the top Q students is matched to her top choice in matching Chik(P ), all
other students are unassigned.

Claim 3. In problem P , matching Chik(P ) is the unique weakly stable matching.
Proof. By Claims 1 and 2 it is possible to assign each one of the top Q students a seat at

their top choice school under P and Chik(P ) picks that matching. Let µ 6= Chik(P ). That
means under µ there exists a top Q student i who is not assigned to her top choice s. Pick the
highest composite score such student i. Since all higher score students are assigned to their top
choices, either there is a vacant seat at her top choice s or it admitted a student with lower
composite score. In either case the pair (i, s) strongly blocks matching µ. Hence Chik(P ) is
the unique weakly stable matching under P .

We are now ready to complete the proof. By Claim 3, ϕ(P ) = Chik(P ) and hence mech-
anism ϕ assigns all top Q students a seat at their top choices. None of the top Q students
has an incentive to manipulate ϕ since each receives her top choice. Moreover no other stu-
dent can manipulate ϕ because regardless of their stated preferences, ϕ(P ) = Chik(P ) remains
the unique weakly stable matching and hence ϕ picks the same matching for the manipulated
economy. Hence, any other weakly stable mechanism is also not manipulable under P .
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Proposition 1. Suppose there are at least k schools and let k > 1. The old Chicago mechanism
(Chik) is more manipulable than truncated serial-dictatorship (Sdk) CPS adopted in 2009.

Proof. Chik is a special case of the Fpfk mechanism where all schools are first preference
first schools with an identical priority ranking. Similarly Sdk is a special case of GSk where
all schools have an identical priority ranking. Therefore Chik being as manipulable as Sdk

directly follows from Proposition 3. We complete the proof by giving an example where Chik

is manipulable even though Sdk is not.
There are three students and three schools each with one seat. The student preferences and

the uniform school priorities are:

Ri1 : s1, s2, s3, i1 πs1 : i1, i2, i3

Ri2 : s1, s2, s3, i2 πs2 : i1, i2, i3

Ri3 : s2, s3, s1, i3 πs3 : i1, i2, i3

The outcomes of Chi2 and Sd2 are:

Chi2(R) =

(
i1 i2 i3
s1 i2 s2

)
and Sd2(R) =

(
i1 i2 i3
s1 s2 s3

)
.

Since no student remains unmatched under Sd2, strategy-proofness of Sd implies that no
student can manipulate Sd2 under profile R. In contrast

Chi2(R−i2 , R
′
i2

) =

(
i1 i2 i3
s1 s2 s3

)
where R′i2 is any preference relation student i2 ranks school s2 as his first choice, and therefore

Chi2i2(R−i2 , R
′
i2

)Pi2 Chi2i2(R)

implies that Chi2 is vulnerable under profile R. Hence Chi2 is more manipulable than Sd2. It
is straightforward to extend this example to show that Chik is more manipulable than Sdk for
k > 2.

Proposition 2. Let ` > k > 0 and suppose there are at least ` schools. Then GSk is more
manipulable than GS`.
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Proof. Suppose there is a student i and preference P̂i such that

GS`i (P̂i, P−i) Pi GS
`
i (P ). (1)

For any student j, let P `
j be the truncation of Pj after the `th choice. This means that in

P `
j any choice after the top ` in Pj are unacceptable, and choices among the top ` are ordered

according to Pj. Observe that relation (1) implies that

GSi(P̂
`
i , P

`
−i) Pi GSi(P

`). (2)

Since GS is strategy-proof, relation (2) implies that student i does not receive one of her top `
choices from the GS mechanism under profile P `. Hence, GSi(P

`) = GS`i (P ) = i.
For k < `, there are two cases to consider.

Case 1: GSki (P ) = i.

Let GS`i (P̂i, P−i) = s and let P̃i be such that s is the only acceptable school.

Claim: GSki (P̃i, P−i) = s.
Proof : First note that GS`i (P̃i, P−i) = s. Moreover, by definition

GS`(P̃i, P−i) = GS(P̃i, P
`
−i) and GSk(P̃i, P−i) = GS(P̃i, P

k
−i).

Gale and Sotomayor (1985) (see also Theorem 5.34 of Roth and Sotomayor 1990) implies
that

GSi(P̃i, P
k
−i) Ri GSi(P̃i, P

`
−i).

Substituting the definitions,

GSki (P̃i, P−i) Ri GS`i (P̃i, P−i)︸ ︷︷ ︸
=s

.

Since c is the only acceptable school in P̃i, the claim follows. �
Thus, in the first case, student i can manipulate GSk:

GSki (P̃i, P−i)︸ ︷︷ ︸
=s

Pi GSki (P )︸ ︷︷ ︸
=i

.

Case 2: GSki (P ) 6= i.

Claim 1 : ∃j ∈ I such that GSkj (P ) = j although GS`j(P ) 6= j.
Proof : Suppose not. Then, since GS`i (P ) = i and GSki (P ) 6= i, there is a school that is

assigned strictly more students under GSk(P ) than GS`(P ). This is a contradiction to Gale
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and Sotomayor (1985), which requires that each school is weakly worse off under GSk (since
profile P k is a truncation of profile P `). �

Pick any j ∈ I such that GSkj (P ) = j although GS`j(P ) 6= j. Let GS`j(P ) = s and let P̃j be
such that s is the only acceptable school.

Claim 2 : GSkj (P̃j, P−j) = s.

Proof : Since GS`j(P ) = s, we have GS`j(P̃j, P−j) = c as well. Moreover, by definition

GS`(P̃j, P−j) = GS(P̃j, P
`
−j) and GSk(P̃j, P−j) = GS(P̃j, P

k
−j).

Gale and Sotomayor (1985) implies that

GSj(P̃j, P
k
−j) Rj GSj(P̃j, P

`
−j).

Substituting the definitions,

GSkj (P̃j, P−j) Rj GS`j(P̃j, P−j)︸ ︷︷ ︸
=s

.

Since s is the only acceptable school in P̃j,

GSkj (P̃j, P−j) = s,

which establishes the claim. �
Thus, for the second case, student j can manipulate GSk:

GSkj (P̃j, P−j)︸ ︷︷ ︸
=s

Pj GSkj (P )︸ ︷︷ ︸
=j

.

Finally, we describe a problem where GS` is not manipulable by any student, but GSk is
manipulable by some student for ` > k > 0. Suppose there are two students, i1 and i2, and
two schools, s1 and s2, each with one seat. The students have identical preferences which rank
s1 ahead of s2 and both schools have identical priority rankings where student i1 has higher
priority than student i2. Under GS2, no student can manipulate because each one is assigned
a school and GS is strategy-proof. In contrast, student i2 is unassigned under GS1, and he can
benefit from ranking s2 as his top choice. This example can be generalized to the case of GSk

and GS` for any ` > k > 0. Since all schools have the same priority ranking in this example,
it also proves that Sdk is more manipulable than Sd` for any ` > k > 0. This completes the
proof.20

20It is also possible to provide an alternative, indirect proof of this result using the equilibrium interpretation
of the definition of weakly more manipulable than together with the characterization of the set of Nash equilibria
in the preference revelation game induced by GSk in Theorem 6.5 of Haeringer and Klijn (2009).
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Proposition 3. Suppose there are at least k schools where k > 1. Then Fpfk is more manip-
ulable than GSk.

Proof. For any student j, let P k
j be the truncation of Pj after the kth choice. By definition,

Fpfk(P ) = Fpf(P k) and GSk(P ) = GS(P k).

Suppose that no student can manipulate Fpfk. We will show that no student can manipulate
GSk either. Consider two cases:

Case 1: Fpfk(P ) = Fpf(P k) is stable under profile P .

Since Fpf(P k) is stable under P , it is stable under P k as well. Moreover, GS(P k) is stable
for P k by definition. Since the set of unmatched students across stable matchings is the same
(McVitie and Wilson 1970), for all students i,

GSi(P
k) = i ⇔ Fpfi(P

k) = i. (3)

Pick some student i. If GSki (P k) 6= i, then student i receives one of her top k choices. This
implies that i receives one of her top k choices under GS. Since GS is strategy-proof, student
i cannot manipulate GSk.

Suppose GSki (P k) = i and student i can manipulate. We derive a contradiction. Since i
can manipulate, there exists some school s and preference P̂i such that

GSki (P̂i, P
k
−i)︸ ︷︷ ︸

=s

Pi i.

Observe that s is not one of the top k choices of student i under Pi for otherwise student i
could manipulate GS. Construct P̃i which lists s as the only acceptable school.

Matching GSk(P̂i, P
k
−i) remains stable under (P̃i, P

k
−i) and therefore

GSki (P̃i, P
k
−i) = s.

Since GS(P k) is stable under P k and GSki (P k) = i by assumption, relation (3) implies

Fpfi(P
k) = i.

By Roth (1984), matching Fpf(P k) is not stable under (P̃i, P
k
−i) since student i remains sin-

gle under Fpf(P k) although not under stable matching GSk(P̂i, P
k
−i). Since matching Fpf(P k)

is not stable under (P̃i, P
k
−i), but it is stable for P k, the only possible blocking pair of Fpf(P k)

in (P̃i, P
k
−i) is (i, s). But since Fpfi(P

k) = i, this implies that (i, s) also blocks Fpf(P k) under
P k, which is the desired contradiction. Thus, in case 1, no student can manipulate GSk.
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Case 2: Fpf(P k) is not stable for profile P .

In this case, a student i along with a first preference first school s block Fpf(P k): That is,
there exists j ∈ Fpfs(P

k) such that not only i has higher base priority than j at school s, but
also s Pi Fpfi(P

k).
Construct P̃i so that school s is the only acceptable school for student i. Since j ∈ Fpfs(P

k)
and student i has higher base priority than student j at school s, we must have i ∈ Fpfs(P̃i, P

k
−i).

But this means that
Fpfi(P̃i, P

k
−i)︸ ︷︷ ︸

=s

Pi Fpfi(P
k),

contradicting the assumption that no student can manipulate Fpf at P k.
Finally we give an example where Fpf2 is manipulable but GS2 is not. It is straightforward

to extend the example for any k > 2. There are three students and three first preference first
schools each with one seat. Since all schools are first preference first, FPF mechanism reduces
to the special case of the Boston mechanism in this example. The student preferences and the
(uniform) school priorities are:

Ri1 : s1, s2, s3, i1 πs1 : i1, i2, i3

Ri2 : s1, s2, s3, i2 πs2 : i1, i2, i3

Ri3 : s2, s3, s1, i3 πs3 : i1, i2, i3

The outcomes of Fpf2 and GS2 are:

Fpf2(R) =

(
i1 i2 i3
s1 i2 s2

)
and GS2(R) =

(
i1 i2 i3
s1 s2 s3

)
.

Since no student remains unmatched under GS2, strategy-proofness of GS implies that no
student can manipulate GS2 under profile R. In contrast

Fpf2(R−i2 , R
′
i2

) =

(
i1 i2 i3
s1 s2 s3

)
where R′i2 is any preference relation student i2 ranks school s2 as his first choice, and therefore

Fpf2
i2

(R−i2 , R
′
i2

)Pi2 Fpf2
i2

(R)

implies that Fpf2 is vulnerable under profile R. Hence Fpf2 is more manipulable than GS2.
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Lemma 1. Fix a set of agents I ′ ⊂ J ∪ C. Let ϕ, ψ be two stable mechanisms such that, for
any preference profile P , and any agent i ∈ I ′,

ϕi(P ) Ri ψi(P ).

Then mechanism ψ is as strongly manipulable as mechanism ϕ for members of I ′.

Proof. Let I ′ ⊂ J∪C and mechanisms ϕ, ψ be as in the statement of the Lemma. Let preference
profile P , agent i ∈ I ′, and preference relation P̂i be such that

ϕi(P̂i, P−i) Pi ϕi(P ). (4)

We want to show that there exists a preference relation P̃i such that

ψi(P̃i, P−i) Pi ψi(P ).

By assumption
ϕi(P ) Ri ψi(P ). (5)

Let the preference relation P̃i be such that only agents in ϕi(P̂i, P−i) are acceptable to agent
i under P̃i. Since matching ϕ(P̂i, P−i) is stable under profile (P̂i, P−i), it is also stable under
profile (P̃i, P−i). Moreover by Roth (1984), agent i is matched with the same number of agents
on the other side of the market at any stable matching under any given preference profile, and
in particular under profile (P̃i, P−i). Therefore, since only agents in ϕi(P̂i, P−i) are acceptable
to agent i under P̃i, stability of matching ϕ(P̂i, P−i) under (P̃i, P−i) implies

ψi(P̃i, P−i) = ϕi(P̂i, P−i). (6)

Hence, by (4), (5), and (6), we have

ψi(P̃i, P−i)︸ ︷︷ ︸
=ϕi(P̂i,P−i)

Pi ϕi(P ) Ri ψi(P ),

which shows that agent i can manipulate mechanism ψ by reporting P̃i. This completes the
proof.

Proposition 4. GSJ is strongly more manipulable than GSC for colleges.
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Proof. Given any problem, the college-optimal stable matching is weakly preferred to student-
optimal stable matching by any college (Gale and Shapley 1962). Therefore, Lemma 1 implies
GSJ is as strongly manipulable as GSC for colleges.

Next, we give a problem where GSC is not manipulable by any college, while some college
can manipulate GSJ . Suppose there are two students, j1 and j2, and two colleges, c1 and c2,
each with one seat. The student and college preferences are

Rj1 : c1, c2, j1 Rc1 : {j2}, {j1}, ∅
Rj2 : c2, c1, j2 Rc2 : {j1}, {j2}, ∅.

The outcomes of GSC and GSJ are:

GSC(R) =

(
j1 j2
c2 c1

)
and GSJ (R) =

(
j1 j2

c1 c2

)
.

Since each college obtains its top choice under GSC, no college can manipulate. However, if
college c1 declares that only j2 is acceptable, it can manipulate GSJ . This completes the
proof.

Theorem 2. Let ϕ be an arbitrary stable mechanism. Then

a) ϕ is as strongly manipulable as GSC for colleges,

b) GSJ is as strongly manipulable as ϕ for colleges, and

c) GSC is as strongly manipulable as ϕ for students.

Proof. Let ϕ be any stable mechanism and P be any preference profile. Then

a) GSCc (P ) Rc ϕ(P ) for any c ∈ C,

b) ϕc(P ) Rc GS
J
c (P ) for any c ∈ C, and

c) ϕj(P ) Rj GS
C
j (P ) for any j ∈ J

by Gale and Shapley (1962). Therefore Lemma 1 implies the desired result.

Proposition 5. The discriminatory auction is intensely and strongly more manipulable than
the uniform-price auction.
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Proof. Let δ denote the discriminatory auction and Υ denote the uniform-price auction. Fix
ε > 0 and a bidder i. Let t−i be the type profile of all other bidders. Recall that the type
of each bidder is the vector of his valuations. Given t−i, order the k(|I| − 1) valuations of all
bidders in I \{i} from highest to lowest. Let b1 be the highest valuation, b2 be the next highest
valuation, and so on. That is, b1 ≥ b2 ≥ · · · ≥ bk(|I|−1) > 0.

Let ti = (v1
i , . . . , v

k
i ) be the type of bidder i. We will consider two cases. For the first

case bidder i will not be able to manipulate the uniform-price auction. For the second case
he potentially can but whenever that happens he will have an at least as profitable deviation
under the discriminatory auction.

Case 1 : v1
i < bk. For this case bidder i’s highest valuation is less than bk. Therefore if

he reports his true values under the uniform-price auction, he will not receive any object and
will not make any payment. Hence ui

(
Υ(t)

)
= 0. In order to have a profitable manipulation,

bidder i will need to receive an object. However, since v1
i < bk, that will require bidder i to pay

a unit price that is higher than his highest valuation. Hence ui
(
Υ(t′i, t−i)

)
− ui

(
Υ(t)

)
≤ 0 for

any t′i ∈ Ti, showing there exists no profitable manipulation of the uniform-price auction for
Case 1.

Case 2 : v1
i ≥ bk. Let bidder i receive m units under the uniform price auction when he

reports his true type ti = (v1
i , . . . , v

k
i ). That means vmi ≥ bk−m+1 and the market clearing-price

for profile t is

p∗ =

{
max{vm+1

i , bk−m+1} if m < k
bk−m+1 if m = k

which in turn implies
ui
(
Υ(t)

)
= (v1

i + · · ·+ vmi )−mp∗ ≥ 0. (7)

Let the potential manipulation t̂i = (v̂1
i , . . . , v̂

k
i ) be such that bidder i receives n units under

Υ(t̂i, t−i). Then the market-clearing price for profile (t̂i, t−i) is

p̂ =

{
max{v̂n+1

i , bk−n+1} if n < k
bk−n+1 if n = k

and hence
ui
(
Υ(t̂i, t−i)

)
= (v1

i + · · ·+ vni )− np̂.

Observe that,
p̂ ≥ bk−n+1. (8)

Suppose

ui
(
Υ(t̂i, t−i)

)
− ui

(
Υ(t)

)
= (v1

i + · · ·+ vni − np̂)− (v1
i + · · ·+ vmi −mp∗) > 0
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and thus bidder i can manipulate the uniform-price auction at profile t. We will construct
t̃i ∈ Ti such that

ui
(
δ(t̃i, t−i)

)
− ui

(
δ(t)

)
> ui

(
Υ(t̂i, t−i)

)
− ui

(
Υ(t)

)
− ε.

First observe that ui
(
δ(t)

)
= 0, since bidder i pays her reported valuation for each unit she

wins under the discriminatory auction. Let t̃i = (ṽ1
i . . . ṽ

k
i ) be such that

ṽ`i =

{
bk−n+1 + ε

2n
if ` ≤ n

0.5bk−n+1 if ` > n

Given t−i, bidder i wins n units and pays bk−n+1 + ε
2n

for each unit upon reporting t̃i. Therefore
inequalities 7 and 8 imply

ui
(
δ(t̃i, t−i)

)
− ui

(
δ(t)

)
=

(
v1
i + · · ·+ vni − n(bk−n+1 +

ε

2n
)
)
− 0

= (v1
i + · · ·+ vni − nbk−n+1)− ε

2
> (v1

i + · · ·+ vni − np̂)− (v1
i + · · ·+ vmi −mp∗)− ε

= ui
(
Υ(t̂i, t−i)

)
− ui

(
Υ(t)

)
− ε

showing that bidder i has an at least as profitable manipulation, subject to an upper bound of
ε deviation, under the discriminatory auction for Case 2.

This covers all cases, so to complete the proof, we describe an example where some bidders
can manipulate δ, but not Υ. Suppose that all bidders other than bidder 1 have the same value
v̄ for all of the units. Bidder 1’s value for the first unit is strictly greater than v̄, while her
value for each of the remaining units is strictly less than v̄. Under the uniform price auction,
when bidders are truthful, every bidder wins one unit. Bidder 1 cannot manipulate to win
more units because she would have to pay v̄ for the additional units. She does not want to
manipulate to win fewer units because she obtains strictly positive utility by reporting the truth
and she cannot manipulate to change the price she pays. No other bidder would find it strictly
profitable to manipulate because each would still have to pay at least v̄ for that unit, and none
can change the price paid. Hence, no bidder can manipulate the uniform-price auction. Under
the discriminatory price auction, when each bidder reports truthfully, every bidder wins one
unit. However, bidder 1 would prefer to under-report her valuation for the first unit to pay less
for it. Hence, for this example, bidder 1 can manipulate δ, but not Υ.

Proposition 6. The Generalized First Price Auction is intensely and strongly more manipu-
lable than the Generalized Second Price Auction.
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Proof. Given a type profile t, let Gsp(t) denote the outcome of GSP auction and Gfp(t) denote
the outcome of GFP auction. Fix ε > 0 and a bidder i. Let t−i be the type profile of all other
bidders. Recall that the type of each bidder is his valuation per click. Given t−i, order the
|I|−1 valuations of all bidders in I \{i} from highest to lowest. Let b1 be the highest valuation,
b2 be the next highest valuation, and so on. That is, b1 ≥ b2 ≥ · · · ≥ b|I|−1 > 0.

Let ti = vi be the type of bidder i. We will consider two cases with four sub-cases for the
second case. For all cases except Case 2d, bidder i will not be able to manipulate the GSP
auction. For Case 2d, he potentially can but whenever that happens he will have an at least
as profitable deviation under the GFP auction.

Case 1 : vi ≤ bk.
In this case ui

(
Gsp(t)

)
= 0 either because bidder i does not receive a slot, or because she

receives a slot at 0 utility.21 Let t′i = v′i be a potential manipulation. For this manipulation to
be profitable, bidder i shall receive a slot. Let this slot be slot `. Then

b`−1 ≥ v′i ≥ b` ≥ bk ≥ vi

and therefore,
ui
(
Gsp(t′i, t−i)

)
= α`vi − α`b` = α`(vi − b`) ≤ 0.

Hence bidder i does not have a profitable manipulation of GSP for Case 1.

Case 2 : vi > bk.
Let bidder i receive slot m under GSP when he reveals his type truthfully. Then bm−1 ≥

vi ≥ bm and
ui
(
Gsp(t)

)
= αmvi − αmbm ≥ 0. (9)

Let t′i = v′i be a potential manipulation and suppose bidder i receives slot ` under t′i = v′i. This
implies v′i ≥ b`. We have four sub-cases to consider.

Case 2a: v′i > bm−1.
For this case, ` ≤ m− 1 and hence b` ≥ bm−1 ≥ vi. Therefore

ui
(
Gsp(t′i, t−i)

)
= α`vi − α`b` = α`(vi − b`) ≤ 0

and thus, bidder i does not have a profitable manipulation of GSP for Case 2a.

Case 2b: v′i = bm−1.
For this case there is a tie and bidder i either receives slot m− 1 at a cost of αm−1bm−1 or

slot m at a cost of αmbm. If the former happens,

ui
(
Gsp(t′i, t−i)

)
= αm−1vi − αm−1bm−1 = αm−1(vi − bm−1) ≤ 0.

21The latter can happen only if vi = bk.
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If the latter happens,

ui
(
Gsp(t′i, t−i)

)
= αmvi − αmbm = ui

(
Gsp(t)

)
.

In either case, bidder i does not have a profitable manipulation of GSP.
Case 2c: Either bm−1 > v′i > bm or v′i = bm and bidder i receives slot m with tie-breaker.
In this case bidder i receives slot m at a cost of αmbm. Therefore,

ui
(
Gsp(t′i, t−i)

)
= αmvi − αmbm = ui

(
Gsp(t)

)
,

and hence bidder i does not have a profitable manipulation of GSP.

Case 2d : v′i ≤ bm and bidder i receives a slot ` with ` > m.
In this case

vi ≥ bm ≥ b` (10)

and
ui
(
Gsp(t′i, t−i)

)
= α`vi − α`b` = α`(vi − b`) ≥ 0. (11)

Suppose ui
(
Gsp(t′i, t−i)

)
> ui

(
Gsp(t)

)
so that bidder i can manipulate GSP at profile t. We

will construct t̃i ∈ Ti such that,

ui
(
Gfp(t̃i, t−i)

)
− ui

(
Gfp(t)

)
> ui

(
Gsp(t′i, t−i)

)
− ui

(
Gsp(t)

)
− ε.

First observe that,
ui
(
Gfp(t)

)
= 0. (12)

Let t̃i = ṽi = b` + ε
2α`

. Given t−i, bidder i either wins slot ` at a cost of α`
(
b` + ε

2α`

)
or a better

slot n (with αn > α`) at a cost of αn
(
b` + ε

2αn

)
. If the former happens,

ui
(
Gfp(t̃i, t−i)

)
= α`vi − α`

(
b` +

ε

2α`

)
= α`(vi − b`)−

ε

2

and if the latter happens,

ui
(
Gfp(t̃i, t−i)

)
= αnvi − αn

(
b` +

ε

2α`

)
= αn(vi − b`)−

αn
α`

ε

2
> α`(vi − b`)−

ε

2

where the last inequality holds by inequality 10 and αn > α`. Therefore,

ui
(
Gfp(t̃i, t−i)

)
≥ α`(vi − b`)−

ε

2
. (13)

We are ready to finalize Case 2d. Relations 9, 11, 12, and 13 imply

ui
(
Gfp(t̃i, t−i)

)︸ ︷︷ ︸
≥α`(vi−b`)− ε2

−ui
(
Gfp(t)

)︸ ︷︷ ︸
=0

> ui
(
Gsp(t′i, t−i)

)︸ ︷︷ ︸
=α`(vi−b`)

− ui
(
Gsp(t)

)︸ ︷︷ ︸
=αmvi−αmbm≥0

−ε
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showing that bidder i has an at least profitable manipulation, subject to an upper bound of ε
deviation, under GFP auction for Case 2d.

This covers all cases, so to complete the proof, we describe an example where some bidder
can manipulate the GFP, but no bidder can manipulate the GSP. Suppose that v1 > v2 = . . . =
vS = vS+1 > vS+2 > . . . > vN . Under the GSP, when all bidders are truthful, the highest value
bidder’s payoff is α1(v1−v2) > 0. She cannot change her payoff unless she reports a bid of v2 or
lower. If she reports her value to be v2, she obtains a zero payoff. If she reports her value to be
less than v2, she does not win a slot and obtains a zero payoff. Hence, she cannot manipulate.
Any bidder with value equal to v2 who obtains a slot cannot manipulate. Reporting a value
greater than v1 will give the first slot, but this is not profitable. Reporting a value between v1

and v2 does not change her payoff. Reporting a value below v2 prevents her from obtain a slot.
Finally, no bidder with value less than v2 can manipulate because the only way to change the
outcome is to report a value greater than or equal to v2, which is unprofitable. Hence, with this
value distribution, no bidders can manipulate the GSP. In the GFP, if every bidder reports the
truth, the outcome is the same as the GSP, but each bidder obtains a zero payoff. If bidder 1
reports a value less than v1, but greater than v2, she wins the first slot, but pays a lower price
than had she reported the truth. This shows that bidder 1 can manipulate the GFP, but not
GSP.
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[3] Abdulkadiroğlu, Atila, Parag A. Pathak, Alvin E. Roth, and Tayfun Sönmez. 2005. “The
Boston Public Schools Match.” American Economic Review, Papers and Proceedings, 96:
368-371.
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[6] Abdulkadiroğlu, Atila, Parag A. Pathak, and Alvin E. Roth. 2009. “Strategy-proofness
versus Efficiency in Matching with Indifferences: Redesigning the New York City High School
Match.” American Economic Review, 99(5): 1954-1978.

[7] Abede, Rediet. 2009. “School Assigning Process Criticized: MIT Professor presents a
possible solution to the problem.” The Harvard Crimson, November 25, 2009. Avail-
able at: http://www.thecrimson.com/article/2009/11/25/cambridge-school-choice/, Last ac-
cessed: December 18, 2011.

[8] Andersson, Tommy, Lars Ehlers, and Lars-Gunnar Svensson. 2010. “Budget-Balance, Fair-
ness and Minimal Manipulability.” Unpublished mimeo, Lund University.

[9] Austen-Smith, David and Jeffrey Banks. 2005. Positive Political Theory II: Strategy and
Structure. University of Michigan Press.

[10] Ausubel, Larry and Peter Cramton. 2002. “Demand Reduction and Inefficiency in Multi-
Unit Auctions.” Working paper, University of Maryland.

[11] Azevedo, Eduardo and Eric Budish. 2011. “Strategyproofness in the Large as a Desidera-
tum for Market Design.” Working paper, University of Chicago.

[12] Balinski, M. and Tayfun Sönmez. 1999. “A tale of two mechanisms: Student placement.”
Journal of Economic Theory 84, 73-94.

41
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